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Abstract 

Computers are capable of learning how to solve complex problems. The emergence of machine 

learning (ML) represents a major advance for the field of mental health. ML algorithms can be trained 

to recognize subgroups of people with similar symptoms (diagnosis), to estimate the probability of 

recovery from these symptoms (prognosis), to make a judgement about the best treatment option for 

a patient (treatment selection), and even to provide feedback and guidance to therapists by learning 

from recordings of effective therapist-patient interactions (process feedback). This article offers an 

introduction to ML and the emerging field of precision mental health care. 
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 To explain machine learning and related concepts 
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Introduction: Explanatory and algorithmic models 

Modern health care has advanced tremendously through the application of the scientific method, 

characterized by the generation of hypotheses from clinical observations and their subsequent testing 

using experimental methods such as controlled trials. Empirical tests help to refine clinical practice by 

confirming or disconfirming prior assumptions about the effects of interventions and their 

mechanisms of action. This hypothesis-testing approach is supported by the use of conventional 

statistical methods, which we refer to as explanatory models (Breiman, 2001). These models aim to 

explain relationships between inputs (i.e., independent variables) and outputs (i.e., dependent 

variable), and they assume that the outputs are produced by some process or mechanism (i.e., an 

underlying biological and/or psychological phenomenon). In recent decades, computers have become 

much more efficient at collecting and processing large volumes of data on human activity, inspiring 

statistical theorists and computer scientists to advance new methods to interrogate complex 

datasets. These developments have given rise to a new generation of algorithmic models (Breiman, 

2001). These models aim to discover stable patterns of relationships between inputs in order to 

generate a set of outputs. Typically, these outputs are in the form of a prediction (e.g., probability of 

recovery from a mental health problem), a classification (e.g., diagnostic category) or a response (e.g., 

a text-based answer to a question). This ‘data mining’ process makes no assumptions about 

underlying mechanisms and can indeed be ‘hypothesis free’ and theoretically agnostic: it will use any 

inputs that are available in order to generate an output. Algorithmic models prioritize the 

specification of formal (i.e., mathematical, logical) rules that will ultimately help to maximize accuracy 

and to minimize error when producing an output. Sometimes these formal rules can be highly 

complex, making the model a ‘black box’. As such, algorithmic models do not prioritize the 

‘explanation’ of relationships between variables or underlying mechanisms, they prioritize the 

accuracy and utility of the output. Machine learning refers to a data mining process used to train 

computerized algorithms to solve prediction and classification problems in order to generate a useful 

output. Data sources used to develop a ML model are referred to as ‘training’ data. Once a model is 

trained, it can be ‘fed’ new data samples in order to produce an output. A trained algorithm can then 

be instantiated into software to automate this input-output process, which constitutes the basis for 

artificial intelligence (AI) technologies that help to solve problems or perform tasks. This article offers 

a primer on machine learning (ML) and related concepts in the context of mental health care. 

 

Broad types of machine learning models 

Contemporary textbooks in the fields of statistics and data science distinguish between two types of 

statistical learning: supervised and unsupervised learning (Hastie, Friedman, & Tibshirani, 2009). In 
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supervised ML, the training inputs include data records that have both ‘features’ and ‘labels or 

values’. Features refer to variables that characterize a sample (e.g., demographics, symptoms, 

biomarkers, neurocognitive tests and personality traits of a clinical sample). Labels and values 

represent the outputs of interest. For example, using the features listed above, a model could be 

trained to output a diagnosis (a categorical label) or to predict the expected level of psychological 

distress after treatment (a value on a continuous scale of distress). In order to achieve this, the 

training sample should contain labelled data, where the diagnosis and post-treatment distress 

severity are available. These labelled samples serve as examples that the model uses to learn about 

the pattern of features that are usually associated with a specific label or value. A related concept is 

that of ‘discriminant ML models’, whose primary task is to recognize labels that have been learned 

through a training process. 

In unsupervised ML, the training inputs include features but not labels, since the output is not 

known or specified a priori. The aim is to discover naturally occurring clusters or subgroups in the 

data. For example, using the features listed above, patients could be classified into latent clusters of 

cases with highly similar clinical-demographic profiles. Thus, the output of an unsupervised ML model 

is a predicted classification which is generated (i.e., discovered) by the data mining process. A related 

concept is that of ‘generative ML models’, which are capable of learning underlying probabilistic rules 

that model the distribution of records in the data space, and which are capable of generating (i.e., 

simulating) new data using those rules. Moreover, ‘semisupervised’ ML models combine insights from 

datasets where some cases are labelled and others are not (Zhu & Goldberg, 2009); for instance, 

where diagnostic labels are only available for some cases but the same features are available for all 

cases. 

Many applications of ML make use of structured quantitative data, where the features and 

labels are coded into categorical, ordinal or continuous variables. Furthermore, the maturation of 

subfields of computer science such as natural language processing (NLP), signal processing (SP), and 

computer vision (CV), allow the analysis of massive amounts of complex data and can lead to dramatic 

progress in studying mental health problems. For example, audio recordings and text-based 

transcripts from many psychotherapy sessions can be used to identify therapist (verbal) behaviors 

that predict post-session symptomatic improvements using a supervised ML model. ‘Sentiment 

analysis’ of patient verbal behaviors could be used to train a supervised ML model to identify the label 

that best represents their emotional state. Or an unsupervised ML model like ‘topic modeling’ can be 

used to automatically identify regularly occurring classes of therapist behaviors throughout therapy. 

Once a ML model is trained and its data processing rules are ‘locked’ (no longer continue to 

be trained), it is referred to as an ‘algorithm’ that is capable of generating an output when it receives 



4 
 

incoming data. An ‘ensemble’ refers to a ML model that consists of multiple algorithms that together 

produce an output. For example, the final predicted value could be the mean value across all 

algorithms (‘model averaging’), or the final predicted classification can be the category that has the 

majority vote from all algorithms (‘model voting’). There are three common ensembling techniques: 

 Bagging: ‘Bootstrap aggregation’ involves training numerous algorithms from the same ML 

family in multiple bootstrapped datasets generated from an original dataset. 

 Boosting: The serial training of models to derive strong learners from weak learners. 

Numerous models from the same ML family are produced, some of which are more or less 

accurate. 

 Stacking: This involves combining the results of heterogeneous algorithms from different ML 

families. 

 

 

Figure 1. Machine learning: types of models and families of techniques 
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Families of machine learning techniques 

There are many ML modeling techniques, and variations thereof, which makes it challenging to 

provide a comprehensive taxonomy. Nevertheless, these are commonly grouped according to broad 

families of statistical techniques. Figure 1 provides a summary of broad types of ML models and 

families of ML techniques with some common examples. 

 For example, Chi-square Automatic Interaction Detector (CHAID), Random Forest, and 

Extreme Gradient Boosting (XGBoost) are different techniques that belong to the wider family of 

Decision Trees. Decision trees are statistical models that help to discover interactions between 

variables, thus identifying subgroups of cases with similar features, who tend to have similar values in 

the dependent variable of interest. Another feature of decision trees is that they can model nonlinear 

associations between independent and dependent variables.  

 Least Absolute Shrinkage and Selection Operator (LASSO), Ridge Regression, and Elastic Net 

are models that use a technique called regularization and which belong to the wider family of 

Penalized Regression Models. Regularization is a process that can help to perform variable selection 

(e.g., identify the most statistically reliable predictors) and weight-setting (e.g., attribute different 

weights to predictors, according to their predictive value). This is achieved by penalizing (shrinking) 

regression coefficients in order to arrive at an optimal model that minimizes overfitting to the training 

dataset and maximizes prediction accuracy.  

 Latent cluster analysis and latent transition analysis are unsupervised machine learning 

techniques that belong to the wider family of Latent Profiling Models. These methods enable the 

data-driven discovery of latent classes, factors or phenotypes. This is achieved by identifying the 

subgroups of cases that have highly similar values across a set of variables, and the parsing of 

subgroups can be performed empirically (e.g., any number of mutually exclusive classes can emerge 

from the data) or can be constrained based on prior evidence or theory (e.g., a specific number or a 

maximum number of classes could be extracted). 

 These examples illustrate how different ML techniques are geared to achieve specific goals 

(e.g., to model interactions, model nonlinear relationships, select useful predictors from a list of 

candidate variables, reduce risk of overfitting, discover latent classes, etc.). Hence, the selection of an 

appropriate ML technique should be made based on the specific goals of the analysis and the features 

and constraints of the available data (e.g., sample size, number of predictors, expectations about the 

relevance of interactions and nonlinear relationships, etc.). 
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Figure 2. Steps of a development pipeline for the clinical implementation of AI 

 

 

 

Machine learning pipelines 

Training a ML model involves several decisions and steps along a ‘pipeline’ of model development and 

validation, represented in Figure 2. High-level objectives are to train a model using data inputs and to 

evaluate its performance. Other sub-tasks involve the collection of adequately sized training and test 

datasets, the preparation of data for analysis, the selection of hyperparameters, cross-validation 

procedures, model evaluation and clinical field-testing. In this section, we provide brief descriptions of 

these sub-tasks of a ML pipeline. 

Sample size calculation 

Like any other statistical model, the usefulness of a ML algorithm depends on the quality (i.e., are the 

features relevant to the prediction task and measured reliably?) and quantity (i.e., is the dataset 

adequately powered?) of training samples. The sample size requirements will vary according to 

parameters such as the expected magnitude of association between inputs-output (i.e., explained 

variance or effect size), the number of features in the dataset, the expected magnitude of prediction 

shrinkage (i.e., reduction of accuracy in a test sample) and the particular ML technique(s) that will be 

applied. We refer the reader to generic sample size calculation guidelines for the development of 

multivariable prediction models (Riley et al., 2019a, 2019b) and for their external validation (Archer et 

al., 2020). There are also model-specific guidelines for techniques such as neural networks (Blamire, 
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1996; Sahiner et al., 2008), latent profile analysis (Tein et al., 2013), decision trees (Morgan et al., 

2003) and others. 

Data pre-processing and feature engineering 

Pre-processing refers to data preparation tasks that are required prior to initiating model training. In 

the context of structured quantitative data, there are several considerations and tasks that may be 

required such as those listed below. 

 Handling of missing data (e.g., applying imputation of data missing at random, only analyzing 

cases with complete data, or treating missing data as an informative category). 

 Reduction of categorical data (e.g., collapsing/merging categories with small samples or 

where categories are not significantly different) or one-hot-encoding (e.g., treating each 

category as a separate binary variable [0 = absent; 1 = present], such as each instance of a 

word in a dataset that transforms therapy session transcript data into quantitative variables). 

 In the context of generalized linear models, training data with highly skewed variables and 

extreme outliers may adversely influence the generalizability of a prediction model and some 

transformations may be required (e.g., normalization of variables, Winsorization of outliers  

by replacing the extreme values with the maximum or minimum value at a relevant 

threshold). 

 Handling of class imbalance (e.g., retaining the original base rates of target categories, or 

using resampling techniques to correct for class imbalance).  

 Handling naturalistic data where treatments were not assigned randomly (e.g., retaining the 

original treatment samples, or applying case-control matching techniques to balance 

covariates across treatments). 

In the context of text-based ML analysis, some of the following considerations and pre-processing 

tasks are relevant.  

 Tokenizing – dividing the text into unique units, called tokens. The term ‘token’ refers to the 

total number of words in a corpus regardless of how often they are repeated. The term ‘type’ 

refers to the number of distinct words in the text. 

 Stop words removal – getting rid of common language articles, pronouns and prepositions 

such as ‘and’, ‘the’ or ‘to’ in English. Very common words that appear to provide little or no 

value to the NLP objective are filtered and excluded from the text to be processed, hence 

removing widespread and frequent terms that are not informative about the corresponding 

text. 

 Stemming and lemmatization – both have the objective of reducing a word to its base or root 

form. The ‘Stemming’ algorithm identifies the common root form of a word by removing or 
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replacing word  affixes (such as “ing”, “s”, “es”). This procedure is fast and simple, but 

sometimes this can result in a word that is not part of the language (e.g., “studies” is 

stemmed as “studi”). ‘Lemmatization’ ensures the ‘lemma’ will be a word that exists in the 

language, and considers the full vocabulary of a language to apply a morphological analysis to 

words (e.g., ”studies” is lemmatized as ”study”, ”was” as ”be”, and ”better” as ”good”). 

 Parts of speech tagging – tagging words to nouns, verbs, etc. 

 Text representation – since ML models are only capable of processing numerical values, the 

tokens in a sentence are replaced by numbers. There are various techniques to convert words 

into numbers. One of the most basic techniques used to represent textual data is ‘one-hot-

encoding’. In this technique, a vector is created in the size of the total number of unique 

words. The value of vectors is assigned such that the value of each word belonging to its index 

is 1 and the others are 0. For example, here is a one hot vector representation of the 

sentence: “I feel very anxious”: 

 I  feel very anxious 

I 1 0 0 0 

feel 0 1 0 0 

very 0 0 1 0 

anxious 0 0 0 1 

 

As illustrated in this example, every word has its own value in a vector. This technique is easy 

to implement, but it does not take the semantic meaning and context into account. More 

advanced text representation techniques, like ‘word embedding’ take the semantic context 

into account and give words with similar meaning or influence in a sentence similar values. 

With word embedding, each word is represented by a dense vector of fixed size (generally 

range from 50 to 300), with values corresponding to a set of features representing different 

aspects of a word’s semantic meaning (e.g., royalty, gender, plural, etc.). These features are 

obtained by random initialization, and are updated by the model during training. As can be 

seen in the following example, words with similar meaning, such as king and queen, would 

end up being closer to one another. In addition, the semantic relationship between different 

embeddings can be illustrated by the similar distance between “queen” and “king” to the 

distance between “woman” and “man”.  
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 Living 

being 

human gender royalty verb plural 

kitten 0.5 -0.1 0.2 -0.6 -0.5 -0.1 

houses -0.8 -0.5 0.1 -0.9 0.3 0.8 

man 0.6 0.8 0.9 -0.1 -0.9 -0.7 

woman 0.7 0.9 -0.7 0.1 -0.5 -0.4 

king 0.5 0.7 0.8 0.9 -0.7 -0.6 

queen 0.8 0.8 -0.9 0.8 -0.5 -0.9 

 

In the context of audio and voice-based ML analysis, some of the following considerations and pre-

processing tasks are relevant: 

 Noise reduction – is a pre-processing procedure used to delineate the spoken signal from 

other sounds that may populate the recordings. The process usually utilizes the low-pass 

filters on the frequency domain based on the knowledge that human speech pitch is lower 

than 500Hz.  

 Voice activity detection – distinguishes between moments of speech from moments of 

silence (see Li et al, 2016). 

 Diarization – distinguishes between segments of the speakers' turns, and segments of 

overlapped speech (see Laufer-Goldshtein et al., 2018). 

 Feature extraction – for each speech turn, there can be several speech features that can be 

extracted. Examples of common features used in speech analysis are f0 (the 

fundamental frequency or main pitch) the intensity (the volume of the speaker) as well as 

speech rate and speech quality features such as HF500 (the ratio between the main 

frequency of the speech to higher frequency relating to speech quality (see Bone et al., 2014). 
Hyperparameter selection and tuning 

Unlike conventional statistical tests, where there is a standard way of computing a result (e.g., 

performing a comparison of means using t-tests), ML techniques require the analyst to specify a 

number of relevant ‘rules’ that will guide the training process. Hyperparameters can be thought of as 

these ‘rules’ or ‘settings’ that determine how a model will learn from data. ML techniques such as 

those listed in Figure 1 have their particular hyperparameters. For instance, when training an 

ensemble of decision trees, the analyst has to decide: how many decision trees will be generated, the 

maximum tree depth (levels), the minimum parent-to-child node size (sample size), p-value 
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significance level to determine splitting and merging, whether or not to apply Bonferroni correction 

for multiple testing, etc.  

 Hyperparameters are usually selected a priori. However, the analyst may decide to manually 

‘tune’ the hyperparameters to learn how different settings influence model performance. If this 

manual tuning is performed unsystematically, it can result in overfitting and poor model 

generalization. For these reasons, automated ‘grid searching’ methods can be applied to search for 

the optimal configuration of hyperparameters that maximizes model performance. 

Cross-validation 

Cross-validation (CV) is a central concept in the field of ML. It involves using some samples to train a 

model and other samples to evaluate its performance. This can be achieved by using different data 

sources for the training-evaluation steps, or by partitioning a large dataset into separate subsets using 

split-half (50% training, 50% test) or imbalanced-split (i.e., 70:30 train-test, or 50:25:25 train-test-

validation) sampling techniques. Ensuring that training and evaluation samples are completely 

separate is essential to minimize ‘information leakage’, which can lead to overoptimistic evaluations 

of the performance of a ML model (Kocak et al., 2021). Hence, it is advisable to use different samples 

(datasets or partitions) for training, testing and validation purposes.  

 Internal CV refers to a process where a model is trained and evaluated using a single data 

source, which is known to be bias-prone due to information leakage and overfitting. Techniques to 

minimize these biases in internal CV include k-fold CV (split into k pieces, typically 5 or 10), leave-one-

out (a single test case is held-out of the training sample in iterative loops), or bootstrapping methods 

(Efron & Tibshirani, 1997; Rodriguez, Perez, & Lozano, 2009). These internal CV techniques usually 

involve multiple training-test iterations (e.g., 10 iterations in 10-fold CV), represented by a clockwise 

loop in Figure 1. Internal CV loops are often used to perform sub-tasks that optimize model 

performance, such as hyperparameter tuning and variable selection. 

 External CV or ‘model validation’ refers to a process where a trained model’s performance is 

evaluated in a completely independent or ‘hold-out’ sample. This method offers a more robust test of 

generalizability, as it represents the extent to which a model could be used in clinical care to make 

predictions or classifications using data from new patients. 

Evaluation and transparent reporting of ML model performance 

Most of the steps and tasks outlined above are geared towards maximizing prediction/classification 

accuracy and minimizing error. Specific indices of accuracy and error are used to train (i.e., during 

internal CV) and evaluate a model, depending on the type of output (for a detailed discussion, see 

Handelman et al., 2019; Kocak et al., 2021). For example, binary classifiers are usually evaluated using 

the Area Under the Curve (AUC) statistic, which is derived from a Receiver Operating Characteristic 
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(ROC) curve analysis. ROC curve analysis is commonly used to evaluate the performance of medical 

diagnosis and screening tests, by examining the full space of possible cut-offs in a continuous measure 

(e.g., an index of disease severity) with their corresponding sensitivity and specificity values. The AUC 

is a summary statistical indicator of the test’s accuracy, where a value of 0.50 indicates chance-level 

performance and values closer to 1.0 are indicative of better accuracy. In addition to the AUC, a 

transparent evaluation of performance accuracy should also report the model’s corresponding 

positive and negative predictive values and confusion matrix (which can help to derive other metrics, 

such as balanced accuracy). Models that predict continuous values are usually evaluated by reporting 

the absolute correlation between predicted-observed values, R squared, mean squared error and root 

mean squared error. In addition, calibration plots enable a visual inspection of the correspondence 

between predicted and observed values in a test or validation sample across the full range of 

predicted values. As a general rule, authors should report indices of accuracy, error and calibration 

plots within the training and test/validation samples to aid interpretability. Reporting indices of 

performance accuracy in both the training and test/validation samples is helpful to understand the 

extent to which prediction shrinkage occurs when a trained model is applied in a different sample. For 

instance, two different machine learning models could obtain the same performance accuracy (e.g.,  

AUC = 0.65) in a hold-out sample, but their performance in the training sample could differ 

substantially (Model 1 AUC = 0.68; Model 2 AUC = 0.89). In this example, we would have greater 

confidence in Model 1, which shows lower prediction shrinkage (AUC shrinkage = 0.03 vs. 0.24) and 

therefore higher stability when applied out of sample. Model 2 is likely to be overfitting to the training 

sample, and might not generalize well to a new population in clinical practice. 

 The strength and credibility of evidence for the clinical utility of ML-based AI technologies 

ranges on a continuum, as illustrated in Figure 2. Level i evidence is the least stringent, and it simply 

involves testing the performance (prediction/classification accuracy) of a ML model within the sample 

used to train it. Level ii evidence improves upon the prior level by including an internal CV procedure, 

where performance is assessed in out-of-sample cases, partitions or bootstraps (depending on the 

internal CV approach used). Level iii evidence uses a statistically independent hold-out sample for 

model validation, and could be based on a training-validation approach or a training-testing-validation 

approach (if, for example, hyperparameters are tuned using internal CV using the training-testing 

partitions).* Level iii is the highest level of evidence within the algorithmic modeling paradigm, which 

                                                           
* Note: We acknowledge that when three datasets are used (A-B-C), and where the intermediate (B) set is used to perform tasks such as 

variable selection and hyperparameter tuning, some authors refer to these as training-validation-test sets. We argue that it is more logical 
to refer to these as training-test-validation sets, since the B set is serving the preliminary function of testing how the performance is 
impacted by different settings or variables. The expression validation denotes a more definitive evaluation of the statistical and/or clinical 
value of a model or technology (i.e., level iii evidence), and it aligns with the more commonly used concept of clinical validation (which 
provides level iv evidence). 
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could justify a transition towards clinical field-testing using conventional healthcare evaluation 

methods and explanatory models of statistical analysis (i.e., hypothesis-testing). The final stage in the 

pipeline towards implementation involves the evaluation of AI technologies in health care (or other 

intended user) populations, which yields the most stringent level of evidence (Level iv). Such evidence 

could include data on the feasibility, acceptability, clinical and cost-effectiveness of AI-driven 

interventions, supporting the case for implementation in routine care. 

 Given the complexities involved in developing ML models, there are several sources of bias 

that can occur at each step of the modeling pipeline. We refer readers to articles by Delgadillo (2021) 

and Kocak et al. (2021) which provide detailed tables of common sources of bias, which can be useful 

for developers and peer reviewers of ML studies. In addition, there are published guidelines for the 

transparent reporting of clinical prediction model development studies (e.g., Collins et al., 2015) and 

the appraisal of methodological quality for systematic reviews of these studies (Wolff et al., 2019). 

Furthermore, the development of AI-specific reporting guidelines is currently underway (Collins et al., 

2021; Sounderajah et al., 2021). 

 

The relevance of machine learning for mental health 

Many important decisions in the field of mental health are made based on theory or clinical 

experience and intuition. Knowledge and interpretation of theory, as well as clinical judgment, vary 

considerably between clinicians and within clinicians (i.e., over time). For these reasons, it is not 

surprising that there is considerable variability in the accuracy of diagnostic and prognostic judgments 

between clinicians, whereas statistical models have been found to be at least as accurate and often 

superior to expert clinicians (see meta-analysis by Ægisdóttir et al., 2006). Similarly, numerous studies 

in the field of psychotherapy have found that clinical outcomes vary considerably between therapists 

(see seminal meta-analysis by Baldwin and Imel, 2013). It is not surprising to see variability in 

treatment response in situations where therapists may follow an eclectic or integrative approach, 

since some therapists may have a better intuition for which interventions or interactions may be most 

suitable for each patient. Yet, outcome variability between therapists persists even in situations 

where therapists are delivering the same intervention to a homogeneous clinical group (e.g., patients 

with major depressive disorder), such as in controlled trials of empirically supported psychotherapies. 

Overall, it is evident that there is considerable room for improvement in clinical decisions concerning 

diagnosis, prognosis, treatment selection and delivery/adaptation for patients with mental health 

problems.  

 Recent trends such as the collection of ‘big data’ in mental health services and the growing 

use of ML techniques have led researchers in the field to call for the development of a data-informed 
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approach to improve diagnosis and treatment – signaling the emergence of a new field of precision 

mental health care (Bzdok & Meyer-Lindenberg, 2018; Delgadillo & Lutz, 2020; DeRubeis, 2019; 

Fernandes et al., 2017; Kessler & Luedtke, 2021; Lutz et al., 2022). A comprehensive review of this 

literature is beyond the scope of the present article, so we refer readers to systematic and narrative 

reviews in the fields of neuroimaging, psychiatry and psychotherapy (Aafjes-van Doorn et al., 2021; 

Chekroud et al., 2021; Dwyer et al., 2018; Meehan et al., 2022; Salazar de Pablo et al., 2021; Shatte et 

al., 2019; Walter et al., 2019). In the next sections, we provide some selected examples to illustrate 

the types of clinical problems and applications that have been approached using ML techniques. 

Diagnostic models 

Initiatives such as the Research Domain Criteria (RDoC) have propelled the collection of multi-domain 

information including genetic, psychosocial, symptomatic, neurocognitive, biometric and passive 

sensing data (e.g., activity data from smartphones) to refine our understanding of mental health 

problems (Insel et al., 2010; Torous et al., 2017). The analysis of such high-dimensional datasets using 

ML techniques could enable the data-driven classification of stable clinical phenotypes. For example, 

Orru et al. (2012) reviewed over 40 studies that applied a Support Vector Machine model to identify 

imaging biomarkers of neurological and psychiatric disorders, generally indicating clinically acceptable 

performance across studies reporting heterogeneous indices of classification accuracy. Whelan et al. 

(2014) analyzed multi-domain data using Elastic Net to characterize the neuropsychosocial profiles of 

adolescents with alcohol use disorders. In another example, the 24th Machine Learning for Signal 

Processing (MLSP) competition required participants to automatically diagnose schizophrenia using a 

labelled dataset including high-dimensional features derived from MRI scans; the results indicated 

that ML techniques could achieve diagnostic classification with a maximum accuracy of AUC = 0.88 

(Silva et al., 2014). More recently, two separate studies used the same unsupervised ML technique 

(Hidden Markov Models) to identify different diagnostic subtypes of depression (Catarino et al., 2022; 

Simmonds‐Buckley et al., 2021). They yielded convergent findings that a specific subgroup of patients 

with a ‘somatic depression’ subtype tended to respond less well to Cognitive Behavioral Therapy 

(CBT). 

Prognostic models 

One of the earliest applications of ML techniques in the mental health literature trained a K-Nearest 

Neighbors (KNN) model to predict psychological treatment outcomes (Lutz et al., 2005). The KNN 

technique identifies cases with highly similar features (i.e., neighbors) to each individual case 

represented in a dataset, and then predicts an outcome of interest for each individual using data from 

their nearest neighbors. Since this seminal study, there has been an upsurge in the development of 

models that aim to predict future events or health states using pre-treatment data. For example, 
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Sajjadian et al. (2021) reviewed 54 studies that developed models to predict antidepressant 

treatment response for patients with major depressive disorder. The studies applied various ML 

techniques such as random forest, 

extreme gradient boosting, LASSO regularization, elastic net, naïve Bayes, support vector machine, 

and others. The reviewed studies reported promising indices of prediction accuracy, although some 

studies had relatively small samples and limited evidence of external cross-validation (internal AUC = 

0.71-0.86; external AUC = 0.70-0.79). In the field of psychotherapy, pre-treatment data have been 

analyzed using supervised ML techniques to predict treatment response (e.g., Flygare et al., 2020; 

Hilbert et al., 2020) and relapse (e.g., Lorimer et al., 2021) after CBT delivered in person, via internet 

or as a guided self-help intervention. Green et al. (2015), Saunders et al. (2016), Delgadillo et al. 

(2017), and Lorenzo-Luaces et al. (2017) applied ML techniques to predict which patients may be 

more or less likely to improve after stepped care interventions, where low and high intensity 

psychological treatments were accessed by patients sequentially. Other novel applications of 

prognostic ML models include the prediction of future dropout from treatment (Bennemann et al., 

2022) and suicidal behaviors (Kessler et al., 2017). 

Treatment selection models 

Statistical models used to help clinicians to decide which of a number of treatment options to offer to 

a specific patient have been referred to as ‘treatment selection models’ (Cohen & DeRubeis, 2018), 

‘precision treatment rules’ (Kessler & Luedtke, 2021), or ‘stratified care models’ in the context of 

selecting between interventions of differing levels of intensity and cost (Delgadillo et al., 2022). The 

general principle is to predict expected treatment outcomes for different treatment options and to 

select the one that maximizes improvement or minimizes adverse outcomes (i.e., side effects, 

dropout, suicidal risk, etc.). In the field of pharmacotherapy, for example, ML techniques have been 

used to develop models to select among different types of medications (e.g., Kim et al., 2019; Nunes 

et al., 2020). Similarly, ML techniques have been used to develop psychological treatment selection 

models to recommend CBT vs. interpersonal psychotherapy (Van Bronswijk et al., 2021), CBT vs. 

psychodynamic therapy (Schwartz et al., 2021), CBT vs. person-centered experiential therapy 

(Delgadillo & Gonzalez Salas Duhne, 2020), trauma-focused CBT vs. eye-movement desensitization 

and reprocessing (Deisenhofer et al., 2018), cognitive processing therapy vs. prolonged exposure 

(Keefe et al., 2018), and others. Novel developments in this area include the application of ML 

algorithms to decide which treatment techniques may be advantageous for specific patients (Webb et 

al., 2022) and how to optimally match patients to therapists in order to improve treatment response 

(Delgadillo, Rubel, et al., 2020). 
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Process models 

A highly innovative development in the field of psychotherapy involves the analysis of multi-modal 

information (e.g., video, audio, text) from therapy sessions. The focus on smaller units within 

psychotherapy sessions such as the patients' and the therapists’ speech-turns enables a more in-

depth understanding of psychotherapy processes and outcomes. The words that clients and 

therapists use in psychotherapy sessions reflect their internal thoughts and emotions and reveal 

important information about their interaction. Several proof-of-concept studies have demonstrated 

the usefulness of NLP methods to analyze psychotherapy sessions (Aafjes-van Doorn et al., 2021). For 

example, Ewbank et al. (2020) trained a deep learning model to automatically classify therapist 

utterances (i.e., statements) from internet-enabled CBT transcripts for over 14,000 patients. These 

utterances were classed into 24 categories, some of which were associated with greater odds of 

treatment engagement and symptomatic improvement. In another study from the same research 

group (Ewbank et al., 2021), utterances from therapy transcripts of 34,000 patients were 

automatically classified by a deep learning algorithm into five categories, of which instances of 

‘change-talk’ were associated with increased odds of symptomatic improvement. Tanana et al. (2021) 

applied NLP techniques to train algorithms capable of automatically detecting emotions expressed 

across a database of 97,497 utterances from psychotherapy transcripts, showing that qualitatively 

important features can be recognized by automated algorithms. In another study, Atzil-Slonim et al. 

(2021) analyzed transcripts from 873 psychotherapy sessions using topic models to investigate 

associations between topics that came up in sessions and their associations with alliance ruptures and 

patients’ self-reported functioning and symptoms. Non-verbal speech-related characteristics such as 

intonation or vocalizations are directly associated with emotional changes (Bryan et al., 2018). The 

vocal channel provides a promising gateway for examining intra-personal and inter-personal 

emotional dynamics in psychotherapy and circumvents the need to rely on subjective measures (e.g., 

self-reports and clinician assessments) and can be assessed by objectively codified indices. Voice 

(more than other channels) lends itself to non-obtrusive measurement. Researchers today implement 

speech and voice-related measures to study psychotherapy processes (e.g., Tomicic et al., 2015). 

Vocal measures have been found helpful in identifying subtle yet clinically relevant changes in 

affective states in psychotherapy (e.g., Paz et al., 2021). For example, Flemotomos et al. (2022) used 

advanced voice recognition and NLP methods to develop an automated tool capable of processing 

raw recorded audio form motivational interviewing sessions, in order to rate the competence of 

therapists in delivering this intervention. These latter studies illustrate the potential for ML to 

generate insights about how therapy works and to develop automated tools to provide feedback to 
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therapists about their interactions, their adherence to effective techniques and how patients may be 

responding to these interactions. 

 

Current state of the art and outlook 

At the time of writing, the application of ML in the field of mental health is relatively new. Peer 

review, quality appraisal and reporting guidelines for ML studies (cited above) have only emerged in 

the last few years. Consequently, most of the studies in this space are at the early stages of the 

development pipeline for AI technologies, and only count with level i or level ii evidence (see Figure 2). 

For example, a recent review of 228 studies of clinical prediction models in psychiatry (Meehan et al., 

2022) reported that only one-fifth of the clinical prediction models were validated in a statistically 

independent sample (level iii evidence). Even fewer studies have crossed the bridge from algorithmic 

model development towards clinical evaluations (level iv evidence) in feasibility studies and controlled 

trials (e.g., see Delgadillo et al., 2022; Lutz et al., 2022; Oliver et al., 2021). We foresee that in the 

coming decade the quality of evidence in this field will be enhanced through increased awareness of 

good practice guidelines to reduce known risks of bias and by greater adherence to guidelines for 

transparent reporting of ML studies. 

 To conclude, the selection of studies cited above shows how the use of ML has huge potential 

to transform mental health care, shifting this field to a new era where AI technologies can improve 

the precision of diagnosis, prognosis, treatment selection and delivery. 
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